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We are also interested in the service and how it 
is provided, and the associated operational 

efficiency (queueing analysis).

But…for now

Only look at the arrival process

And how it evolves from a schedule
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Start with a simple deterministic model 
of an appointment arrival process

And investigate how realistic it is.

For our example, the evidence indicates that 
the data are neither consistent with the 
deterministic model nor an NHPP.

We have developed new models.
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Deterministic Appointment Model

• Often Involving a computerized appointment system
• Batches of β customers arrive every τ minutes

– Batch j arrives at time (j-1) τ
– Total of ν batches
– Daily Total Number of arrivals:  N = ν β
– Total Time:   T = (ν – 1) τ

time0 2ττ 3τ
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Random Schedule and Deviations From It

• Random Filling of Schedule over Time

• Random No Shows on the day

• Extra Unscheduled Arrivals

• Random Lateness or Earliness
So…

Is a deterministic model appropriate?

Or… Is an NHPP appropriate?

No, we need something else. 5



DATA
Endocrinology Clinic

Samsung Medical Center, Seoul, Korea

• Endocrinology:  deals with the endocrine system 
(glands which excrete hormones into the blood stream)

• Three Months:  7/1/2013-9/30/2013
• Appointments to see one of 16 doctors
• Outpatient only (within one day)
• 39,253 entries

– Scheduled day and time (by 10 minutes), when schedule 
made

– Schedule evolves over time, including on the target day
– Define “the schedule” as determined at the end of the 

previous day
– 27800 show up, 8500 cancel in advance, 3000 no shows 
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Actual Daily Arrivals: 62 days
14 weeks,  7/1 to 9/30: 448 x 62 ≈ 27,800

(Standard Deviation if Poisson is (448)1/2 = 21) 7



Evolution of the Schedule for Dr. 1
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Evolution of the Schedule for Dr. 5
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The schedule evolves over time.

About 25% set the last two weeks

About 55% determined 2-13 weeks in 
advance (many at about 3 months)

About 20% determined more than 13 in 
advance.
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Focus on ONE DOCTOR:   

Doctor 9

22 morning shifts
8:00am-1:00pm
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Daily totals for Dr. 9:  22 am shifts (top), 22 pm shifts (bottom)
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Evolution of the Schedule for Dr. 9 Over a Year: 22 am shifts
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When the Schedule Is Made:  Number of Days Before
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Evolution of 
Schedule for 

First Visits
22%

Evolution of 
Schedule for 
Repeat Visits

78%



Let the schedule be defined by its state at 
the end of the previous day.

The schedule:   Batches Bsj scheduled to arrive in 
slot j at time (j-1)τ

No shows Bnj

Additional unscheduled arrivals Buj

(scheduled on the same day)

Then Baj = Bsj – Bnj + Buj

(not counting deviations: earliness or lateness)
16



17

Schedule for Doctor 9 for 22 Morning Shifts



A High-Demand Service System 
with Overloaded and At-Capacity Days
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Distribution of Batch Size Bs in the Main interval [8:50,12:20]

Distribution of Number After the Main interval, No
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No-Shows for Doctor 9 for 22 Morning Shifts
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Unscheduled Arrivals for Doctor 9 on the 22 Morning Shifts



Daily Totals
Ns = number scheduled, Na = number arrived 

Nn = number no-shows, Nu = number unscheduled
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Full am shift: Na = Ns - Nn + Nu

E[Ns] = 66.1, E[Nn] = 5.5, E[Nu] = 2.0, E[Na] = 62.6
Var(Ns) = 21.9 > Var(Na) = 17.4

Dispersion:  D = Var/Mean
Ds = 21.9/66.1 = 0.33, Da = 17.4/62.6 = 0.278

Main time interval [8:50, 12:20]:

E[Ns] = 60.8  while Var(Ns) = 9.8



View of Daily Totals

With appointments:  Not constant, but predictable variability, 
so Under-Dispersion

(less variable than Poisson: D=V/M = 0.3 < 1)

With Call Centers:  often strong day-to-day variation, 
so Over-Dispersion

(more variable than Poisson: D=V/M >1)
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Random Earliness or Lateness

Let X be the amount of time late.
Let F(t) = P(X ≤ t) be the cdf.

(X < 0 means arrive early)
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Average numbers for Dr. 9 in each 30-minute subinterval 
within the main time interval [8:50,12:20]
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Dr. 9:  Lateness empirical cdf’s in each 30-minute interval



Within the Day
Conditional on the daily total

If there is significant variability due to no shows and lateness,
Then the arrival process may be NHPP within the day, 

conditional on the daily total.
[Key math: generalization of conditional uniform property]

Appointments might be like call centers in that way.

Even though daily totals are very different.
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Appointment arrival data passed the KS 
Tests of NHPP when viewed properly.

Next Move to the arrival rate function
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Overall Arrival Process Model

Daily Totals :  Binomial or Gaussian with given mean and 
variance

Within the day, conditional on the daily total:  
NHPP with deterministic rate
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29

Average number of patients scheduled for Dr. 9 
in each ten-minute interval of the 22 am shifts
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Average number of patient arrivals for Dr. 9 
in each ten-minute interval of the 22 am shifts
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